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Abstract-A numerical study is made of double-diffusive convection in a rectangular cavity with combined 
horizontal temperature and concentration gradients. The boundary conditions at the vertical side walls 
are imposed in such a way that the thermal and solutal buoyancy effects are counteracting, resulting in an 
opposing gradient flow configuration. Numerical solutions to the governing full time-dependent Navier- 
Stokes equations at large thermal (R,) and solutal (R,) Rayleigh numbers are acquired. The essential details 
of flow, temperature and concentration fields are described for a large Lewis number. The time evolutions 
of these fields are portrayed. Distinct flow regimes in the steady-state are identified as the buoyancy ratio 
R, (= RJR,) varies over a wide range. The structures of the thermal, solutal and velocity boundary layers 
near the side wall are examined. When R, is moderate, the multi-layered flow structure in the interior is 
clearly depicted; the attendant S-shaped thermal field and the step-like concentration distribution are 
brought into focus. The existence of the layered flow structure in the core is strongly corroborative of the 
results of the prior experimental visu&zations. Based on the numerical data, the steady-state mean Nusselt 
number % and Sherwood number .Sh are tabulated for varying values of R,, As R, increases from a very 
small value, % decreases monotonically towards a value characteristic of conductive transfer; however, 
% reaches a minimum value when R, takes a moderate value. This behavior is qualitatively consistent 

with the previous experimental findings. 

1. INTRODUCTION 

DOUBLE-DIFFUSIVE phenomena usually refer to a class 
of fluid motions which are subject to the simultaneous 
presence of two (or possibly more) diffusive com- 
ponents with different molecular diffusivities [I]. In 
the initial stages of development of this topic, much 
of the research was devoted to applications in the 
oceanic flow processes ; the primary diffusing agents 
are heat and salt in this case, and the process has 
accordingly been termed thermohaline or thermo- 
solutal convection. A growing body of literature has 
since been produced, elucidating salient features of 
many fluid systems, with particular reference given 
to the convective phenomena in the oceans. Among 
others, such classical flow behavior as the salt fountain 
or the oscillator has been well documented, and some 
of these illustrative flows have been demonstrated in 
simple laboratory experiments [ 11. 

Expanding further on the subject of double- 
diffusion, mostly along the analytical and exper- 
imental lines of approach, a more elaborate and subtle 
nature of the flows of a confined fluid has been dis- 
closed for a variety of flow geometries and boundary 
conditions. Some of the prominent laboratory studies 
include those of Turner [I], Huppert and Linden [3], 
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and Incropera and Viskanta [4]. These investigations 
dealt with the flow structure in a fluid system in a 
container with a vertically stable density gradient 
when heating was applied at the bottom wall. One 
striking feature of these revelations was the presence 
of the layered flow structure. The precise details of the 
flow properties of the layer structure showed marked 
variations depending on the specific boundary con- 
ditions; however, the formation of layers and inter- 
faces was predicted theoretically and was verified 
experimentally for some specific examples. 

Another interesting flow configuration of a con- 
tained fluid can be found in a system with a vertically 
stable salinity gradient subject to horizontal heating 
(or cooling). The forming of the layered structure and 
the horizontal propagation of the convective cells are 
eminent features of this fluid system. This problem 
was originally conceived by Thorpe et al. [5], who 
made analytical predictions and experimental obser- 
vations regarding the existence of the layered struc- 
tures. Some discrepancies in the flow properties were 
noted, and subsequent efforts [6] were directed to 
clarify the details of the flow characteristics. Lab- 
oratory flow visualizations by Wirtz et al. [7] suc- 
cinctly demonstrated the essence of the layer structure 
of the flow in an enclosure, in which a vertical con- 
centration gradient and a horizontal temperature 
gradient were imposed on the container boundaries. 

As in the foregoing statements, the bulk of the prior 
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NOMENCLATURE 

Ar aspect ratio, H/L 

Ch dimensional concentration at the high- 
concentration side wall 

C, dimensional concentration at the low- 
concentration side wall 

C, dimensional reference concentration 
AC concentration difference, C,, - C, 
D mass diffusivity 

9 gravity 
H height of cavity 
L width of cavity 
Lr Lewis number, K/D 

Ncr local Nusselt number 
% mean Nusselt number 
P nondimensional pressure 

P dimensional pressure 
Pr Prandtl number, V/K 

R, solutal Rayleigh number, g&ACL3/w 

R, thermal Rayleigh number, g&AOL3/rcv 

4 buoyancy ratio, p,AC/j3tA0 
s nondimensional concentration 
SC Schmidt number, v/D 

S/I local Sherwood number 
sh mean Sherwood number 
T nondimensional temperature 
t dimensional time 
iJ nondimensionalized horizontal velocity 

component 
u dimensional horizontal velocity 

component 
V nondimensionalized vertical velocity 

component 

L dimensional vertical velocity 
component 

x nondimensional horizontal coordinate 
x dimensional horizontal coordinate 
Y nondimensional vertical coordinate 

?: dimensional vertical coordinate. 

Greek symbols 

ss coefficient of volumetric expansion with 
concentration 

B, coefficient of volumetric expansion with 
temperature 

4 solutal boundary layer thickness 

4 thermal boundary layer thickness 

0, dimensional temperature at the high- 
temperature side wall 

4 dimensional temperature at the low- 
temperature side wall 

0” dimensional reference temperature 
A0 temperature difference, Oh - 0, 
K thermal diffusivity 
V kinematic viscosity 

P dimensional density 

P* nondimensional density 

PO dimensional reference density 
T nondimensional time 

Th nondimensional heat-up time scale 

7s nondimensional ‘e-folding time’ for a 
purely solutal convection 

* nondimensional stream function. 

work was concerned with the flow configuration in 
which the concentration gradient was applied in the 
vertical direction. Obviously, this was consistent with 
the flow models of relevance to the oceanic fluid 
systems. However, recent industrial developments in 
modern technological innovations have increased the 
need for high quality material processing. The growth 
of crystals, chiefly used in electromechanical industries. 
is a prime example. The heat and mass transport 
phenomena in the fluid phase associated with material 
processing are critical to the quality and productivity 
of the crystals grown. 

For the flow models of great value for engineering 
applications in material processing, the problem of 
double-diffusive convection in a confined space is a 
central issue. The diffusive properties are usually con- 
centration of a substance (such as impurity or dopant) 
and heat. A clear understanding of the fluid transport 
phenomena that arise in this kind of convective flow 
bears an added significance as the material processing 
activities gain momentum by exploiting the reduced- 
gravity environment of space vehicles [8]. As pointed 

out by Ostrach [9], various modes of convection, exhi- 
biting their particular characteristics, are possible 
depending on the flow configuration and the exter- 
nally specified boundary conditions. Some of the 
prominent conditions are, among others, the strength 
and direction of the gradients of the diffusive prop- 
erties imposed on the fluid system. 

One outstanding flow configuration is the double- 
diffusive natural convection in a cavity with both the 
externally imposed temperature and concentration 
gradients normal to the gravity vector. This flow rep- 
resents an idealization of many realistic fluid systems 
that are frequently utilized in growing high quality 
crystals. In spite of the apparent relevance to tech- 
nological applications, as observed by Wang et nl. 
[IO]. this flow model has remained largely untreated 
in the literature. Apart from the practical utility, this 
flow poses a problem of substantial interest in basic 
fluid dynamics. Ostrach [9] asserted that the quali- 
tative flow characteristics are heavily influenced by 
the orientations of the gradients of the diffusive agents 
relative to the gravity vector. Wang et al. [IO] and 
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Kamotani er al. [I l] initiated preliminary experiments 
in a rectangular cavity of aspect ratio 0.55. They used 
an electrochemical system in a copper sulfate-acid 
solution to simulate the horizontal concentration 
gradient. The experiments revealed a three-layered 
flow structure in the core for a certain range of buoy- 
ancy ratio. These experimental endeavors were, how- 
ever, highly restrictive in nature. The above exper- 
iments were limited to the early stages of convection, 
and they were unable to perform the experiments lead- 
ing to the steady-state. Owing to the unavoidable ther- 
mal convection and electrolysis, the imposed hori- 
zontal concentration gradient could not be held 
constant. Recently, Lee et al. [I21 and Lee and Hyun 
[13] devised improved experimental techniques by 
installing vertical membrane walls; exterior to these 
membranes, solutions of constant preset con- 
centration and temperature were forced to circulate. 
In this manner, Lee er al. [ 121 and Lee and Hyun [ 131 
achieved a closer experimental approximation to the 
steady-state gradients of both temperature and con- 
centration imposed in the horizontal direction in the 
rectangular cavity. Lee et af. [12] and Lee and Hyun 
[13] observed the layered flow structure in the rec- 
tangular enclosures of aspect ratio 2.0 and 0.2. For 
the flows in a vertical slot, scaling analyses were per- 
formed by Bejan [14] under the restrictive assump- 
tions that the inertia terms were neglected. His analy- 
ses were concerned mainly with the two extreme cases 
in which the buoyancy effect was dominated either by 
heat transfer or by mass transfer from the sides. 

In brief, as documented above, the recent ac- 
complishments on the experimental front of these 
complex flow phenomena have been remarkable. 
However, these experimental findings have not been 
critically assessed against other independent inves- 
tigations. One powerful and highly versatile avenue of 
research will be comprehensive and explicit numerical 
studies. Obviously, the properly conducted numerical 
approaches will validate the essential elements of 
the experimental measurements; furthermore, the 
numerical solutions are capable of illuminating the 
wealth of details of the flow properties, which are not 
normally available by experimental techniques alone. 
The numerical endeavors will therefore be highly 
complementary to the experimental studies. The full- 
dress numerical simulations in the past encountered 
formidable difficulties due principally to the problem 
of the numerical solution techniques and the pro- 
hibitive computational costs. For realistic double- 
diffusive convections with large Lewis numbers, the 
solutal boundary layer is much thinner than the ther- 
mal boundary layer. Resolving this thin solutal layer 
requires excessively large computing resources, and 
this has been one main factor hampering the progress 
in numerical studies of the problem in hand. In the 
present paper, by taking advantage of the greatly 
expanded modern computing capabilities, we have 
carried out numerical calculations of the governing, 
full time-dependent Navier-Stokes equations. In an 

effort to isolate and elucidate the physics involved, 
double-diffusive convection in a rectangular cavity 
with both the temperature and concentration gradi- 
ents applied in the horizontal direction is considered. 
The primary aim of the present study is to describe 
clearly the pertinent characteristics of flow, tem- 
perature and concentration fields in the cavity. We 
shall demonstrate the details of the layered flow struc- 
ture and the profiles of the flow properties. The major 
impetus will be given to ascertaining the effect of 
the buoyancy ratio (R, = RJR,), R, and R, being the 
solutal and thermal Rayleigh numbers, on the Row 
structures. 

In the present study, the thermal and solutal bound- 
ary conditions on the vertical side walls of the rec- 
tangular container are imposed such that both the 
temperature and concentration on one vertical side 
wall are higher than those on the other vertical side 
wail. This implies that the buoyant convections driven 
by the two horizontally parallel gradients are coun- 
teracting, which has been termed the opposing case 
[9]. The horizontal top and bottom walls are insulated 
and impermeable. The opposite configuration, in 
which the two imposed horizontal gradients of tem- 
perature and concentration are antiparallel, con- 
stitutes the cooperating case [9] ; this problem will be 
dealt with in a subsequent companion paper [15]. 

Comprehensive and systematically organized 
numerical solutions have been acquired for high solu- 
tal and thermal Rayleigh numbers. The calculations 
have covered a wide range of the buoyancy ratio 
(R, = 0.5-30). The time evolutions of the flow, ther- 
mal and solutal fields will be examined. These numeri- 
cal results will be shown to be in broad qualitative 
consistency with the available experimental obser- 
vations [l I-131. By analyzing the numerical data, the 
heat and mass transfer coefficients on the boundary 
wall have been computed. This information has not 
been readily provided by the prior experimental efforts 
[12]. The present numerical studies will depict the 
essentials of the evolving layered how structure and 
the behavior of the boundary layers, and will delineate 
the complex interactions of the diffusive agents in 
determining the flow patterns inside the cavity. 

2. MATHEMATICAL FORMULATIONS 

Figure 1 displays a schematic of the flow con- 
figuration. The rectangular cavity is of width Z, and 
height H, and the Cartesian coordinates (x, J+), with 
the corresponding velocity components (u, c), are indi- 
cated herein. Initially, the fluid is motionless, and the 
temperature and concentration are uniform through- 
out at B0 and Co, respectively. At the initial instant 
t = 0, the temperature and concentration at the ver- 
tical side walls are abruptly altered, and they are main- 
tained thereafter. The governing equations are the 
two-dimensional, time-dependent Navier-Stokes 
equations with the Boussinesq assumptions incor- 
porated. These equations, expressed in properly non- 
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FIG. I. Flow configuration and coordinate system. 

dimensionalized form using standard notation. are 
well known [9] : 

.Pr($+c$) (2) 

dV - 
_I - 

2; + $&v)+ Fy( VV) = - ;g 

+Pr($+$)+Pr(R,T-RJ) (3) 

In the above, the nondimensional quantities are 
defined as 

U = [U/(X/L)]. v = [C/(X/L)], X = s ‘L, 

Y = y/L, 5 = [t/(fz’/K)], P = p/(&/L’). 

T= (O-0,)/(0,--tl,), S= (C-C,)/(C,--C,). 

Pr = V/K, Le = K/D, Ar = H, L, 

R, = g/l,AOL’/tiv, R, = gb,ACL’/‘m, 

R, = (/Wc)/(lW) = Rs!Rt. 

The dimensional temperature is denoted by 0, and the 
dimensional concentration of the heavier species by 
C. The physical properties are v, kinematic viscosity; 
K, thermal diffusivity ; D. diffusivity of the con- 
centration ; B, and PI. the coefficients of volume expan- 
sion by thermal and concentration differences respec- 
tively. The maximum temperature and concentration 

diferences across the cavity width are represented by 
AU = 0,-U,. and AC = C, - C,. The principal non- 
dimensional parameters are the Prandtl number Pr, 

the Lewis number Le. the thermal Rayleigh number 

R,. the solutal Rayleigh number R, and the aspect 
ratio of the container Ar. In the present study. the 
Prandtl number Pr and the Lewis number Le are 
set to be 7.0 and 100.0, respectively, to simulate the 
approximate values of salt water. The aspect ratio is 
set Ar( = H L) = 2.0 to allow explicit comparisons 
with the experiments of Lee et al. [l2]. The solutal 
Raylcigh number R, is set to be 6 x IO’; in line with 

the basic objectives of the present study, the thermal 

Rayleigh number R,, thus effectively the buoyancy 
ratio R,,. is varied to explore the various characteristic 
regimes. 

Phc appropriate initial and boundary condition5 
are 

C,’ = C’ = 0 on all solid boundaries ; (7) 

T=S= -0.5 on X=0, T=S=O.5 on X= 1; 

i-T C’S 
(‘1’ I -- = 2-p = 0 on Y = 0. Ar. (9) 

For definiteness, in the ensuing discussion, the left 
vertical wall (X = 0) denotes the low-temperature and 
low-concentration boundary, and the right vertical 
wall (X = I) indicates the high-temperature and high- 
zoncentration boundary of the container; therefore. 
C, = (C,+C,),2, and 0, = (B,+O,)? 

Numerical techniques to solve the above set of 
:quations have been well established. After having 
tested rigorously several numerical algorithms. we 
Slave adopted a version of the ELZD program, based 
3n the SIMPLER algorithm originally developed by 
Patankar [ 161. The reader is referred to Patankar [ 161 
‘or the specifics of the numerical methods. One of the 
nain obstacles to the previous numerical attempts has 
Jeen associated with the requirements of prohibitively 
arge computing resources. although the numerical 
Jrocedures themselves are fairly straightforward. In 
.he present study, the entire computations were 
:xecuted on a CRAY-2S super-computer. The mesh 
Joints employed were typically (51 x 75). A highly 
itretched grid net, in particular in the regions close to 
he vertical side walls, was needed to resolve the solu- 
al boundary layer at large Lewis numbers. 

3. RESULTS AND DISCUSSION 

In order to gain a physical insight into the main 
‘eatures of the flow in the early phases, an illustrative 
itream pattern is displayed by plotting contours of 
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FIG. 2. (a) Illustrative stream pattern at a small time 
(T = 0.004). (b) Dividing streamlines at T = 0.004. Buoyancy 

ratios are R, = 20 (A), 12.5 (B), 9 (C) and 6 (D). 

the stream function JI in Fig. 2(a). Here, the stream 
function $ is defined such that U = Z$/ZY, V = 
-d$/dX. The thermal diffusivity is much larger than 
the solutal diffusivity at large Lewis numbers ; therefore, 
the thermal buoyancy is dominant in much of the 
region near the vertical boundaries. Only in very nar- 
row strips adjacent to the vertical walls is the solutal 
buoyancy force substantial. Consequently, the heavier 
fluids in the narrow vicinities of the high-concentra- 
tion vertical wall at X = I flow down toward the bot- 
tom horizontal wail. The downward flow within the 
extremely thin solutal boundary layer near X = 1 
reaches the bottom horizontal wall at Y = 0, and ad- 
vances along the horizontal wall toward the vertical 
wall at X = 0. This leftward horizontally moving flow 
is retarded by the thermally-induced flow which moves 
rightward near the bottom horizontal wall and up- 
ward near the hot vertical wall at X = 1. Therefore, 
in the right bottom corner, a clockwise closed circu- 
lation is formed by the above-described simultaneous 
action of solutally- and thermally-induced buoyancy 
effects. A similar, but antisymmetric, flow pattern is 
seen near the vertical wall at X = 0. 

The extent of the horizontal advance of the comer 
closed circulation depends largely on the relative 
strength of the solutal buoyancy, i.e. R,. Figure 2(b) 
demonstrates the location of the dividing streamline 
separating the corner circulation at a small time 
(r = 0.004) for varying buoyancy ratios. Obviously, 
as the buoyancy ratio increases, the horizontal layers 
that separate the corner circulations advance further 
toward the opposite vertical walls. This behavior was 
experimentally observed by Ostrach et al. [ 171 in a 
shallow cavity (Ar = 0.13). 

The salient features of the flow at a large time close 
to the steady-state, when the buoyancy ratio is small, 
are illustrated in Fig. 3. The thermal field in the 
interior core shows a near-linear vertical stratification. 

Since the thermal effect is dominant in this case, i.e. a 
low R,. the flow structure is akin to a single-diffusive 
purely thermal convection. The isohalines are highly 
concentrated in extremely thin regions near the 
vertical side walls. The strong thermal buoyancy 
obstructs the diffusion of concentration into the core ; 
this causes the concentration in the core to maintain 
the original value of S = 0.0. In the bulk of the interior 
core, the counter-clockwise circulation, driven by the 
thermal buoyancy, is prevalent. In tiny localized 
regions near the top right and bottom left corners, 
the temperature gradients are relatively weak and the 
resulting weak clockwise circulations, induced by the 
solutal buoyancy. are visible. 

The numerical results for an intermediate buoyancy 
ratio (R,, = 12.5) are depicted in Figs. 4-6. The ther- 
mal and solutal buoyancy effects are comparable in 
these situations. Figure 4 exemplifies the horizontal 
profiles of the temperature, concentration and vertical 
velocity in the core at mid-depth (Y = Ar 2) on the 
side of the low concentration wall (X < 0.5) at a large 
time (T = 1 .O). The plots confirm that, at a large Lewis 
number (Le = lOO.O), the solutal boundary layer thick- 
ness is much smaller than that of the thermal bound- 
ary layer. The flow is upward in the thin solutal 
boundary layer due to the low-concentration wall; 
outside of the solutal layer but within the thicker 
thermal layer, the flow is directed downward owing to 
the thermal buoyancy force. Wang et al. [IO] suggested 
that, for a single-diffusive thermal or solutal convec- 
tion, the ratio of the side wall thermal and solutal 
boundary layer thickness for Pr > I and SC > 1 could 
be scaled as &d, = (Le Rp)’ 4. Inspection of the 
numerical results of Fig. 4 points to consistency with 
the above estimates of the layer thicknesses. Note 
that the present computations were for the case of a 
simultaneous application of the two buoyancy effects. 
This apparent consistency, therefore, implies that the 
coupling between mass diffusion and heat conduction 
within these boundary layers is relatively weak and, 
consequently, it is believed that the thicknesses of 
the two layers could be estimated quite independently. 

Figure 5 displays the time evolution of thermal, 
solutal and flow fields. Also shown is the vertical 
profile of the horizontal velocity along the mid-width 
X= 0.5. At very early times (see Fig. 5(a) for 
r = 0.004) the thermal field is generally very similar to 
that of a pure thermal convection. Only in narrow 
strips adjacent to the vertical side walls is the flow 
driven by the solutal buoyancy discernible. As 
remarked earlier, the solutal diffusivity is much 
smaller than the thermal diffusivity ; the isohalines 
are crowded only very near the vertical walls, and the 
bulk of the container interior is still at the uniform 
concentration S = 0.0. Figure 5(b) illustrates the 
results at a small time, r = 0.05. However, notice that 
this corresponds to a time instant which is much larger 

than the conventional heat-up time scale. For the 
parameter values of Fig. 5. the heat-up time scale, 
given by 7,, = 2-l ‘Ar’ a R;’ 4 [18], is rh = 0.0180. 
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FIG. 3. Plots of isotherms, isohalines. stream functions and the vertical profile of horizontal velocity at 
mid-width. Conditions are R, = 3.0 and r = 1.0. Values for isotherms are, from left to ri_eht. -0.389. 
-0.278. -0.167. -0.0556. 0.0556. 0.167. 0.278 and 0.389. Values for isohalines are: A. -0.389; B. 
-0.275: C, -0.167; D, -0.0556; E, 0.0556; F, 0.167: G, 0.27S; H, 0.389. Values for $ are: A. -I; B. 

0:C,13.5;D.17:E,40.5;F,51:G.67.5;H.81. 

Consequently, the thermal effect has penetrated well 
into the interior core, but the concentration in the 
greater part of the interior is still at the initial value 
of S = 0.0. Only in the top and bottom regions is 
the concentration stratified. The flows driven by the 
solutal buoyancy, which are opposite to the thermally- 
induced Rows, predominate the boundary regions 
near the solid walls in the clockwise sense. In the 
core, the horizontal velocities are very weak. and the 
thermal field exhibits a linear vertical stratification. 
At intermediate times (see Fig. S(c) at r = 0.2), the 
top and bottom regions, in which concentration is 
stratified, expand further toward the mid-depth. The 
counter-clockwise circulation in the core near the mid- 
depth, maintained by the thermal buoyancy, shrinks 
in size. The concentration is nearly uniform (S = 0.0) 
within this counter-clockwise circulation. In the 
regions between the edges of this counter-clockwise 
circulation cell and the top and bottom areas of clock- 
wise flows, two more counter-clockwise cells begin to 
form. At large times (Fig. 5(d) at r = OS), this multi- 
layered flow structure becomes fully established. The 

FIG. 4. Horizontal profiles of temperature (T), concentration 
(s) and vertical velocity (V* = V/500) at mid-height 

(Y = h/Z). Conditions are R, = 12.5 and T = 1.0. 

thermal held illustrates a complicated pattern. It 
appears that the entire cavity breaks down into three 
mini-cavities corresponding to the three layer-struc- 
tured counter-clockwise circulations in the core. .\s 
to the flow field, the small-sized secondary rolls, which 
are discernible within the primary counter-clockwise 
circulation at small and intermediate times, disappear 
at large times when the fully layered structure is 
developed. It is recalled that. for the case of a purely 
thermal convection at large thermal Rayleigh 
numbers, the secondary rolls exist near the vertical 
walls [l9]. In the present numerical calculations. one 
may argue that the effective Rayleigh number for each 
mini-cavity is much smaller than the overall Rayleigh 
number for the entire system, pointing to the absence 
of the secondary rolls in the fully established state. 
Mention should be made of the experiments of Thorpe 
et al. [5] in which the solutal and thermal fields exhi- 
bited features similar to the above findings. It is noted 
that their experiments were performed with an 
imposed vertical concentration gradient and a hori- 
zontal temperature gradient. However, the physical 
interpretations are equally applicable to the layered 
structures in the interior core for both flow con- 
figurations. In order to examine the layered structure 
in further detail, the vertical profiles of T and S along 
the mid-width X = 0.5, as well as the local Wusselt 
number Nzr (= i?T/c?J%jr _ J and the Sherwood number 
S/i (=C.S;‘d&= & are plotted in Fig. 6. Three differ- 
ent time instants are represented in the figure to por- 
tray the evolutions. Evidently. when the layered struc- 
ture has been established, the characteristic ‘S-shaped 
temperature profile and the step-like concentration 
distribution are readily recognized. Within each layer. 
the concentration is nearly uniform. This is attribu- 
table to vigorous convective mixings within the cell. 

Step-like changes in concentration take place at the 
interfaces of the two adjacent layers. Similar features 
were also observed in the experiments of Thorpe et al. 
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(see Figs. 12 and 13 of ref. [5]). Along the vertical side 
wall, the local Nu shows considerable dependence 
on the interior flow and thermal structures, but such 
dependence of S/I is relatively weak. This can be 
explained by noting that the influence of the global 
Row in the interior core on the structure within the 
solutal boundary layer is minor; very close to the 
vertical side walls, the solutally driven flow is the 
principal element in determining the features within 
the thin solutal boundary layer. 

As the buoyancy ratio increases further, the effect 
of the solutal buoyancy outweighs the thermal effect. 
Figure 7 exemplifies the results with a large buoyancy 
ratio, R,, = 30.0. At small times (see Fig. 7(a) at 
5 = 0.05), the region in which the solutal buoyancy is 
predominant occupies a comparatively larger portion of 
the cavity. Figures 7(a) and (b) show that, unlike the 
previous case of a moderate R,, a two-layer structure 
is visible in the interior core, in which the thermal field 
is strongly stratified and the concentration is still at 
the initial, uniform value S = 0.0. Since the overall 
magnitude of the thermal buoyancy is small, the ther- 
mal fields near the vertical walls can be characterized 
as nearly conductive. Consequently, the boundary 
layer suction mechanism by the thermal buoyancy, 
which is the vital ingredient in a thermally convective 
process, is feeble. Furthermore, the clockwise cir- 
culation, driven by the strong solutal buoyancy, 
around the periphery of the vertical side walls is 
noticeable. The two-layer structure is discernible in 
the middle portions of the cavity, where the local 
thermal field contains areas of gravitationally 
unstable temperature distributions. As time elapses 
toward intermediate stages (see Fig. 7(b) at T = OS), 
the two layers are reduced in size and they tend to 
move closer to the mid-depth. At large times (see Fig. 
7(c) at r = l.O), the layered structure vanishes, and 
the flow field bears characteristics similar to a purely 
solutal convection. The concentration field is sub- 
stantially linearly stratified in the vertical direction, 
and the thermal field in the bulk of the core resembles 
that of a conductive distribution. The velocities are 
appreciable only within very thin boundary layers 
adjacent to the solid walls, and the fluid in much of 
the interior is nearly stagnant. 

Figure 8 reveals the explicit influence of the buoy- 
ancy ratio on the eminent features of the steady state 
(t = 1.0). This time instant, T = 1.0, corresponds to 
roughly three ‘e-folding times’ 7s for a purely solutal 
convection, i.e. rI = 2- ‘!2Ar’/4 Le3’4 R; ‘I4 [18]. Fig 
ure B(a) demonstrates the results when R, is substan- 
tial, i.e. R,, = 20.0 (note that this value of Rp is inter- 
mediate between the results of Figs. 5 and 7). The 
solutally driven flow is dominant in much of the entire 
cavity. Only in a narrow core region surrounding the 
mid-depth is the thermal buoyancy significant. Conse- 
quently, the overall flow pattern is clockwise, except 
in the small core where the thermally driven flow is in 
the counter-clockwise sense. Also, within this local- 
ized core region, the thermal layer is of convective 

boundary layer type, and the temperature is stratified 
while the concentration is at a uniform value 
(S = 0.0). Figure B(b) for R, = 9.0, and Fig. B(c) for 
R, = 6.0 clearly depict the changes in the flow charac- 
teristics as the buoyancy ratio decreases. As can be 
easily anticipated, the buoyancy ratios of Figs. 8(b) 
and (c) belong to the general category when the solutal 
and thermal effects are roughly comparable. An out- 
standing feature of the flow in these circumstances 
is the presence of the layered structure, which was 
succinctly ascertained earlier (see Fig. 5(d) for 
R, = 12.5 at 7 = 1.0). However, a close inspection 
of these three sets of results points to measurable 
differences as well. As the buoyancy ratio decreases 
(or the relative thermal effect increases), it is note- 
worthy that the temperature gradients near the ver- 
tical walls become steeper; also, the top and bottom 
areas in which the concentration is stratified shrink in 
size. These observations are attributable to the more 
vigorous thermal convective activities. This has the 
implication that, as the buoyancy ratio decreases, the 
regions of the localized solutally-induced clockwise 
circulations near the top and bottom end walls 
become narrower. Figure 8(c) for R, = 6.0 discloses 
that the solutally driven flows along the top and bot- 
tom walls have nearly disappeared. Scrutiny of the 
solutal fields of Figs. B(b) and (c) also indicates that 
the intervals between the two isohalines at the layer 
interfaces become smaller as R, decreases. This 
implies that the step-like variation of concentration 
becomes sharper and the thickness of the interface 
itself diminishes as R, decreases. Accordingly, any 
further reduction in R, brings forth the flow regime 
in which the thermal effect is predominant throughout 
the whole cavity, as was asserted earlier (see Fig. 3 for 
R, = 3.0). 

Based on the foregoing results. we may summarize 
the following four categories of flow regimes as R, 
varies. These are : (1) the regime in which the thermal 
effect is fully dominant (e.g. Fig. 3), resembling a 
purely thermal convection; (2) the regime in which 
both the thermal and solutal effects are comparable 
(e.g. Figs. 5, B(b) and (c))--the distinct layer struc- 
tures are the characteristic features ; (3) the regime in 
which the solutal effect is dominant, except within 
the mid-depth core region where the primary effect is 
thermally-induced (e.g. Fig. B(a)); (4) the regime in 
which the solutal effect is fully dominant (e.g. Fig. 7), 
resembling a purely solutal convection. These cate- 
gorizations are in full accord with the experimental 
characterizations of Lee et al. [12]. The experimental 
classifications of ref. [12] excluded regime (3) above. 
The close agreement exhibited between the present 
numerical results and the available experimental 
observations of ref. [12], both in the main flow charac- 
teristics and in the patterns of the thermal and solutal 
fields, is highly encouraging. 

The explicit effect of the buoyancy ratio on the 
structures of the steady-state boundary layers is por- 
trayed in Fig. 9. As Rp increases, the overall thermal 
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FIG. 5. Time evolving plots of isotherms, isohalines, stream functions and vertical profile of horizontal 
velocity at mid-width for R, = 12.5. Times are r = 0.004 (a). 0.05 (b), 0.2 (c) and 0.5 (d). Values for 
isotherms and isohalines are the same as in Fig. 3. Values for w are: (a) A. -3 : B. 0; C. 18 ; D. 36: E, 54; 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

10:F,14:(d)A,-2:B,-I:C.?:D,8;E,13. 

field changes its character from boundary layer type 
to conductive type, since the enhanced solutal strati- 
fication inhibits thermal convection in the cavity (see 
Fig. 7(c)). As expected, the concentration field 
becomes more strongly boundary layer type as R, 
increases. The consequence in the flow structure, as R, 
increases, appears in the augmentation of the vertical 
velocity within the thin solutal layer. Figure 9(c) dem- 
onstrates that the flow in much of the cavity, with the 
exception of the solutal layer, is determined primarily 
by the thermal effect, even though the solutal Rayleigh 
number R, is larger than the thermal Rayleigh number 

4. 
We shall examine in further detail the effect of R, on 

the steady-state density structure. Figure IO illustrates 
the vertical profiles at T = 1 .O of p* 

1 ( > T p*=zc -f&-I =-x+s 

along the mid-width. When R, is large (see the curve 
for R, = 30.0) the density field is nearly linearly 
stratified in the vertical direction due to the dominant 

solutal buoyancy. For intermediate values of R,_. the 
aforementioned step-like density stratification, in 
association with the layered flow structure, is con- 
spicuous. Further scrutiny of the numerical data of 
intermediate R,, i.e. R, = 6.0. 9.0 and 12.5, indicates 
that the height of the individual laysr increases and 
the thickness of the layer interface decreases as R, 
decreases. When R,, is very small (see the curve for 
R, = X0), the density is weakly stratified, and the 
entire flow field is influenced principally by the ther- 
mal effect. It is noted, in passing, that localized patches 
in which the density field is almost constant or even 
slightly gravitationally unstable are visible near the 
top and bottom horizontal walls. As asserted earlier. 
when R, is small, the counter-clockwise circulation. 
driven by the dominant thermal buoyancy, is strong 
enough to transport fluids of high (low) concentration 
from the right (left) side wall to the top (bottom) end 
wall ; this mechanism sustains the above-described 
patches near the horizontal end walls. 

We now turn to the question of the total heat and 
mass transfer rates across the cavity. These quantities 
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FIG. 7. Time evolving plots of isotherms, isohaiines, stream functions and vertical profiles of horizontal 
velocity at mid-width. The condition is R, = 30.0. Times are 5 = 0.05 (a), 0.2 (b) and 1.0 (c). Values for 
isotherms and isohalines are the same as in Fig. 3. Values for $ are : (a) A, - 7 ; B, -4; C, - I ; D. 2; E, 
5:(b)A, -4;B. -2.5;C. -l:D,OS:E,2:(c)A, -OS;B, -l,C. -1.5;D, -2;E, -2.5: F, -2.94. 

are of central importance to technological appli- 
Sh =; 

s 

.I, 

cations. Table 1 lists the numerical results for the 
(;S/SX),v _ 0 d Y. 

mean Nusseh % and Sherwood s/l numbers defined 
0 

as These were computed by using the data at the instant 

s 

Ar T = 1.0, which corresponds to approximately 35,. 
(Srj?X), = 0 d Y When R,, is either large or small, at this time instant, 

0 the flows are virtually in steady-state conditions. Even 

and for intermediate values of R,,. it is recalled that the 
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FIG. 8. Plots or isotherms, isohalines. stream functions and vertical pro&e of horizontal vetocity at mid- 
width (t = 1.0). Buoyancy ratios are J$ = 20 (a), 9 (b) and 6 (c). Values for isotherms and isohalines are 
the same as in Fig. 3. Values for t) are : (a) A, -d;B,-2.5;C,-~;D,I;E,4;(b)A, -O.S;B,3.9;C, 

8.6; D. 13.3; E, 18; fc, A, -3;B,4:C, If;D. 18;E,25. 

precise solutal boundary layer structure is sub- 
stantially unaffected by the global interior How after 

represents the conditions at the steady-state or quasi- 

the e-folding time obtainable for pure solutal con- 
steady-state situations, 

vcction [I I], Also, the time variations in the interior 
First, attention is focused on z. Bejan [Xl], for the 

flows are quite minor after about 32,. Therefore, the 
case of pure thermal convection, proposed a theo- 

numerical ~nfo~ation for ?& and ,% in Table 1 
reticalfy-derived expression for cavities of high aspect 
ratios (Ar > i), z = 0.3644(R,jAr)i ’ when R”’ Ar t 
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tends to infinity. Although the present calculations 
are for large, but finite, values of R,’ ’ Ar, ?% com- 

puted for pure thermal convection in this study was 
found to be closely consistent with the prediction of 
ref. [20]. It should be noted that the value for PTC 
Nussclt number in Table I was obtained for the same 
R, as the one assumed in each case of different R,. 

When R,, is small, Table I indicates that NU for a 
double-diffusive convection is slightly lower than that 

for the corresponding single-diffusive pure thermal 
convection. However, the discrepancies in the values 
of Nu, which stem from the influence of the retarding 
solutal buoyancy effect, are insignificant. This can be 
explained as, for small values of R,, the dominant role 
is played by thermal convection in the bulk of the 
cavity. On the contrary, when R,, is large, the influence 

of the counteracting solutal buoyancy is overwhelm- 
ing. At extremely large values of R,, the trend is that 
Nu approaches a value close to unity, suggesting that 
the thermal field is akin to that of a conduction-con- 

FIG. IO. Nondimensional density p* at A’ = 0.5 at 7 = 1.0. 
The values of R, arc: -, R,,=3; ----, R,=6; 
-.-._-,R,=9; . . . . . . . . . R,= l,.j;-..-.._-,R,=30, 

trolled case. This is the expected consequence of an 
inhibited thermal convection in the cavity due to a 
strong concentration stratification. 

The behavior of the mass transfer is now delineated. 
As R, increases towards moderate and large values. 
Table I shows that Sh tends to the limiting value 
appropriate for a purely solutal’ convection. It is 
noticeable that the increases in Bare quite mild as R,, 

exceeds around 3.0, and the trend is more conspicuous 
when R, takes larger values, say over 20.0. This can 
be explained by noting that, when R, is large, the 
solutal boundary layer flow is the prime element in 
shaping up the overal flow pattern. The above obser- 
vation is qualitatively consistent with theexperimental 
findings of Kamotani et al. [I I]. When R,, is 
sufficiently small, however, Table I shows that S/I 

increases rapidly as R, decreases. This noteworthy 
behavior of ?% suggests that the mass transfer near 
the vertical wall is principally determined by the over- 
riding thermal convection rather than by solutal con- 

Table I. Mean Sherwood Sh and Nusselt NU 
numbers at a large time (T = 1.0) 

4 S/l DDC -“’ PTC 

0.5 133.09 28.79 29. IO 
I .o 104.94 23.47 24.26 
3.0 68.996 14.43 is.22 
6.0 70.449 9.510 15.21 
9.0 78.180 6.937 13.69 

12.5 81.775 4.95 I 12.57 
20.0 83.450 1.965 Il.11 
30.0 84.125 I.713 9.994 
PSC 85.992 

For the tabulation of Nu. DDC denotes the 
case of double-diffusive convection and PTC 
denotes the case of pure thermal convection. 
For the value of R,, PSC indicates the case of 
pure solutal convection. 
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vection; at a very small R,, the thermal buoyancy 
dominates the entire flow field, including the solutal 
boundary layer regions. 

The above analyses of the behavior of a, as seen 
in Table I, point to the existence of a minimum s7f at 
a certain R,,. In the present numerical computations 
for te = 100.0, this minimum of s/; occurs around 
R, zz 3.0. The presence of a minimum sh was also 
pointed out by Kamotani ef al. [l 11, and the results 
of the present numerical study are in broad qualitative 
consistency with their findings. Further examination 
of the present data and the experimental results of 
ref. [ 1 I] reveal some quantitative differences. At this 
juncture, two points can be raised for possible sources 
of the quantitative discrepancies. One is obviously due 
to the reduced side wall effect amenable for cavities 
of low aspect ratios (Ar = 0.13, 0.55) in the exper- 
iments of ref. [I 11. Another might originate from the 
insufficient resolution in the present numerical results 
of the details within the extremely thin solutal layers. 
Use of a finer grid mesh could conceivably improve 
the numerical resolutions, which will provide far more 
accurate numerical flow data. These changes are 
reserved for future studies. 

acquired. As R, increases from a very small value, % 
decreases monotonically, and at a large value of R,, 
% is reduced towards a value appropriate for thermal 
conductive processes. However, sh takes a minimum 
value when R, is moderate, i.e. R, 2 3.0 in the present 
study. This qualitative behavior of heat and mass 
transfer rates is in accord with the experimental 
findings of Kamotani et al. [I 11. 
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CONVECTION DOUBLEMENT DIFFUSIVE DANS UN RECTANGLE AVEC DES 
GRADIENTS HORIZONTAUX OPPOSES DE TEMPERATURE ET DE CONCENTRATION 

R&sum&-On prkente une etude numerique de la convection doublement diffusive dans une cavite rectan- 
guiaire avec gradients horizontaux combines de temperature et de concentration. Les conditions aux limites 
sont imposees sur les faces verticaies opposees de facon que les effets de flottement thermique et solutal se 
contrarient. On obtient des solutions numeriques des equations de Navier-Stokes pour des grands nombres 
de Rdyleigh thermique (R,) et solutal (R,) pour les champs de temperature et de concentration decrits a de 
grands nombres de Lewis. On decrit les evolutions dans le temps. Des regimes distincts en regime permanent 
sont identifies quand le rapport de flottement i$ (= RJR,) varie largement. On examine les structures des 
couches limites thermiques, solutales et dynamtques pres des parois. On obtient la structure multicouche 
de I’ecoulement quand R,, est mod&e: le champ thermique en St la distribution de concentration en 
escaiier sont examines. Les nombres de Nusselt !VI~ et de Sherwood Sh moyen sont tabules pour des valeurs 
variables de R,. Lorsque R, augmente depuis une faible valeur. ~VLI drcroit de fircon monotone jusqu’a une 
valeur caracttristique de la conduction ; neanmoins ?% atteint une valeur minimale quand Ry prend une 

valeur modkrte. Ceci est qualitativement en accord avec des resultats experimentaux anterteurs. 

GEGENGERICHTETE DOPPELT-DIFFUSIVE KONVEKTION IN EINEM 
RECHTECKIGEN HOHLRAUM MIT HORIZONTALEN GRADIENTEN 

Zusammenfassung-Die doppelt-diffusive Konvektion in einem rechteckigen Hohlraum mit wnagerechten 
Temperdtur- und Konzentrationsgradienten wird numerisch untersucht. Die Randbedingungen an den 
senkrechten Seitenwiinden sind derartig, daD die therm&hen und die konzentrationsbedingten Auftriebs- 
effekte einander entgegenwirken. Die vollstandigen zeitabhangigen Navier-Stokes-Gleichungen werden 
fiir grol3e thermische (R,) und Konzentrations- (R,) Rayleigh-Zahlen berechnet. Das Striimungs-, 
Temperatur- und Konzentrations-Feld wird fur eine grol3e Lewis-Zahl ermittelt. Die zeitliche Entwicklung 
dieser Felder wird dargestellt. Es ergeben sich unterschiedliche stationare Striimungsgebiete, abhangig vom 
Auftriebsverhaltnis R, = R,/R,. Die Struktur der Grenzschichten fur Temperatur. Konzentration und 
Geschwindigkeit an der Seitenwand wird untersucht. Fiir mittlere Werte von R, ergibt sich eine mehr- 
schichtige Striimungsstruktur im Inneren; besonders betrachtet wird das S-fiirmige Temperaturfeld und die 
stufenfiirmige Konzentrationsverteilung. Die Existenz dieser g,eschichteten Striimung im Kern wird durch 
friihere experimentelle Versuche mit Sichtbarmachunrder Stromung bestltigt. Autrund der numerischen 
Daten werden stationlre mittlere Nusselt-Zahlen (Nu) und Sherwood-Zahlen (Sh) fur unterschiedliche 
Werte von R, berechnet. Fur kleine, zunehmende Werte von R,, nimmt die Nusselt-Zahl monoton bis auf 
einem Wert ab. der charakteristisch ist fiir Warmeleitung; im Gegensatz dazu erreicht die Sherwood- 
Zahl fiir einen mittleren Wert von I?,, ein Minimum. Dieses Verhalten srimmt qualitativ mit friiheren 

experlmentellen Beobachtungen iiberein. 

KOHBEKTHBHbIn TEI-IJIO- M MACCOOIjMEH B I’IP5IMOYI-OJIbHOti IIOJlOCTM I-IPM 
I-IPOTHBO~E??ffBYIO[qMX TOPH3OHTAJIbHbIX rPAAWEHTAX TEMnEPATYPbI M 

KOHUEHTPALWi 

.klHOTWlla-~HCJleHHO HCCJTellyeTCK KOHBeKTHBHbIfi TellJtO- H MaCCOO6MeH B np8MOyrOJlbHOi-i nOJlOCTH 

C~OBM~~TH~IMH ropH30HTanbHbIMA rpanss2rraMHTebmepaTypM H roweHTpamii3.~paHwmbIe ~C~OBHK 

Ha60r0~~XcreHKaxraK0~sr,~o~~uTennoebuc~Ma~onbIxno~~MHb~~~ K~nKioTcKnp0~iia0- 

nOJlO)KHbIMH, 'IT0 o6ycnonnHnac? =pffep TeSeHHK C npOTHB0nekTByWW.W rpaiD,eHTaMH. nOJfy- 

YeHbI SHWleHHble peweHHK IIOJlHblX HeCTalUlOHapHbIX ypaBHeHHii HaBbe-CTOKGi flpH donbluw 
3HaYeHHnX TennonYx (RJ H KoHueHTpaItiioHHbtx (RJ SHCCJI P3nen. 0nHca~b1 xapalrrepabie OCO~~HHOCTH 

nonel -reqemrn, TeMnepaTyp H KoRuewrpauHI nnn 6onbwHx 3HaqeHHil vHcna Jlbweca. llpo~nmccrpa- 

pOBaHa 3BOJllOLWl 3THX IIOJIeii BO BpeMeHH. npH BapbHpOBaHHe OTHOUleHSiR nOil%eMHblX CHJl RP(= 
RJRJ B nnip0Ko~ nHana30He sHaneHHilo6HapyxceHo Hecxonbxo pa3newiblx namioeapablx pexlllrroe 
Tevewn. PaccMoqwfbt crpyk-rypsr Termoiwro, rdacconoro H LwHaMH~ecKoro norpaawwbix wloee y 
6OKOBOfi CTeHKH.~pHyMe~HHOM3HaPeHHH 'IHCJla R, yCTaHOBJIeHa 'ETKO BblpameHHaK MHOrOCJlOiiHaX 

ClQyKTypa Te'leHHK BO BHyTpeHHefi o6nacrx; BbIXBJfeHbI COnyTCTByIOUlHe S-o6pasHoe Tel'UIOBOe nOJIe H 

cryneHvaToe pacnpenenemie roriueqaud. CnoHcran crpyiirypa Tewmx n nnpe nonrnepvpacr pe3y- 
J,bTaTb, Ilpe~ywHX SKCnepHMeHTUIbHbIX Ha(iJIIOneHHik Ha OCICOB~ 'UiCJTeHHbI~~HHbIX Ta6ynH- 

pytoTCn YCTaHOBHBwHecK CpeL,HHe 3HaYeHHR WCeJl Hyccenbra Nu H lIfepnyIla Sh &WI pa3JlHSHbIX 

3HaVeHHfi wicna R,, npH pOCTe R, OT 04eHb MaJlOrO 3Ha9eHHK 'IHCJIO NU MOHOTOHHO CHJUXCaeTCK A0 

nenmrmrbr, xapaKTepHoii Ann KownyrmnHoro Tennonepeeoca, B To epebfn KaX qsicno Sh AocTHraeT 

MHHHMyManpHyMepeHIWX3HalreHHKX R,. Tax- nOBeneHHeKaWCTBeHHocornacyeTcKcHMeiO~MHCX 

3KCnepHMeHTaJIbHblMHLWHHbIMU. 


